Effects of Oxidative Stress on the Solubility of HRD1, a Ubiquitin Ligase Implicated in Alzheimer’s Disease
نویسندگان
چکیده
The E3 ubiquitin ligase HRD1 is found in the endoplasmic reticulum membrane of brain neurons and is involved in endoplasmic reticulum-associated degradation. We previously demonstrated that suppression of HRD1 expression in neurons causes accumulation of amyloid precursor protein, resulting in amyloid β production associated with endoplasmic reticulum stress and apoptosis. Furthermore, HRD1 levels are significantly decreased in the cerebral cortex of Alzheimer's disease patients because of its insolubility. The mechanisms that affect HRD1 solubility are not well understood. We here show that HRD1 protein was insolubilized by oxidative stress but not by other Alzheimer's disease-related molecules and stressors, such as amyloid β, tau, and endoplasmic reticulum stress. Furthermore, we raise the possibility that modifications of HRD1 by 4-hydroxy-2-nonenal, an oxidative stress marker, decrease HRD1 protein solubility and the oxidative stress led to the accumulation of HRD1 into the aggresome. Thus, oxidative stress-induced HRD1 insolubilization might be involved in a vicious cycle of increased amyloid β production and amyloid β-induced oxidative stress in Alzheimer's disease pathogenesis.
منابع مشابه
Hrd1 suppresses Nrf2-mediated cellular protection during liver cirrhosis.
Increased endoplasmic reticulum (ER) stress and reactive oxygen species (ROS) are the salient features of end-stage liver diseases. Using liver tissues from liver cirrhosis patients, we observed up-regulation of the XBP1-Hrd1 arm of the ER stress response pathway and down-regulation of the Nrf2-mediated antioxidant response pathway. We further confirmed this negative regulation of Nrf2 by Hrd1 ...
متن کاملEndoplasmic Reticulum Stress and Parkinson's Disease: The Role of HRD1 in Averting Apoptosis in Neurodegenerative Disease
Endoplasmic reticulum (ER) stress has been known to be involved in the pathogenesis of various diseases, particularly neurodegenerative disorders such as Parkinson's disease (PD). We previously identified the human ubiquitin ligase HRD1 that is associated with protection against ER stress and its associated apoptosis. HRD1 promotes the ubiquitination and degradation of Parkin-associated endothe...
متن کاملNeuroprotection by Endoplasmic Reticulum Stress-Induced HRD1 and Chaperones: Possible Therapeutic Targets for Alzheimer’s and Parkinson’s Disease
Alzheimer's disease (AD) and Parkinson's disease (PD) are neurodegenerative disorders with a severe medical and social impact. Further insights from clinical and scientific studies are essential to develop effective therapies. Various stresses on the endoplasmic reticulum (ER) cause unfolded/misfolded proteins to aggregate, initiating unfolded protein responses (UPR), one of which is the induct...
متن کاملMolecular approaches to the treatment, prophylaxis, and diagnosis of Alzheimer's disease: possible involvement of HRD1, a novel molecule related to endoplasmic reticulum stress, in Alzheimer's disease.
Endoplasmic reticulum (ER)-associated degradation (ERAD) is a protective mechanism against ER stress in which unfolded proteins accumulated in the ER are selectively transported to the cytosol for degradation by the ubiquitin-proteasome system. We cloned the novel ubiquitin ligase HRD1, which is involved in ERAD, and showed that HRD1 promoted amyloid precursor protein (APP) ubiquitination and d...
متن کاملHerp regulates Hrd1-mediated ubiquitylation in a ubiquitin-like domain-dependent manner.
Accumulation of aberrant proteins in the endoplasmic reticulum (ER) triggers the unfolded protein response pathway that helps the cell to survive under these stress conditions. Herp is a mammalian ubiquitin domain protein, which is strongly induced by the unfolded protein response. It is involved in ER-associated protein degradation (ERAD) and interacts directly with the ubiquitin ligase Hrd1, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2014